FICHE TECHNIQUE

T 8048-2 FR

Vanne aseptique à passage équerre type 3349

Avec membrane USP-VI

Application

Vanne de régulation pour applications aseptiques dans l'industrie pharmaceutique et agroalimentaire selon les normes DIN ou ANSI avec membrane USP-VI

Vanne à passage équerre type 3349 avec

- servomoteur pneumatique type 3271
- servomoteur pneumatique type 3277 pour le montage d'un positionneur intégré
- servomoteur à piston pneumatique type 3379, en option avec positionneur type 3724

Autres caractéristiques

- Design aseptique pour une sécurité sanitaire accrue
- Clapet avec caractéristique de débit pour une régulation précise
- Corps de vanne en inox avec faible teneur en ferrite delta (1.4435/316 L)
- Surfaces intérieures en contact avec le produit usinées fin ou polies
- Conformité FDA pour les matériaux en contact avec le fluide
- Conformité USP Class VI-121 °C

La vanne de régulation est pourvue d'un corps sans zone de rétention et peut être équipée, selon l'exécution, de divers raccordements. Elle peut être nettoyée ou stérilisée selon le procédé CIP ou SIP. La tige de clapet est étanchée par une membrane PTFE. Un raccord de contrôle permet de surveiller l'étanchéité de la membrane. La vanne est adaptée à un fonctionnement aseptique.

Exécutions

Exécution standard Version matériel HV01 · Vanne à passage équerre usinée dans la masse avec USP-VI, DN 15 à 100 (NPS $\frac{1}{2}$ à 4) · Pression de service maximale selon Tableau 5 · Construction avec chapeau de vanne boulonné · Étanchéité de la tige de clapet par membrane PTFE

Exécution microdébit · Vanne à passage équerre usinée dans la masse avec USP-VI, DN 6 à 25 (NPS $\frac{1}{4}$ à 1) · Pression de service maximale selon Tableau 5 · Construction avec chapeau de vanne boulonné · Étanchéité de la tige de clapet par membrane PTFE

 Vanne type 3349 avec servomoteur pneumatique type 3271 ou 3277 (voir fiche technique ► T 8310-1)

Fig.1: Vanne de régulation type 3349 avec servomoteur pneumatique type 3277 et positionneur type 3730

 Vanne type 3349 avec servomoteur pneumatique à piston type 3379 (voir notice de montage et de mise en service
 EB 8315)

Autres exécutions

- Clapet et siège stellités®
- Clapet avec étanchéité souple en PEEK à partir de SB6
- Clapet V-Port pour des pressions différentielles élevées à partir de SB12
- Clapet V-Port avec étanchéité souple en PEEK à partir de SB12
- Matériaux du corps: Hastelloy® C22, Hastelloy® C4, Hastelloy® C276, Uranus B, Duplex, 14547/254SMO, Alloy 20 (N08020) · Sur demande
- Raccords possibles · Embouts à souder, raccords filetés (aseptiques), raccords clamp (aseptiques), brides (aseptiques) · Voir Tableau 2
- Avec positionneur type 3724 · Voir fiche technique
 T 8395 (uniquement en lien avec le servomoteur pneumatique à piston type 3379)
- Traitements de surface sur demande : rugosité possible jusqu'à R_a 0,6 µm pour la surface extérieure, jusqu'à R_a 0,4 µm pour la surface intérieure
- Presse-étoupe (en option) pour l'exécution microdébit

Fonctionnement

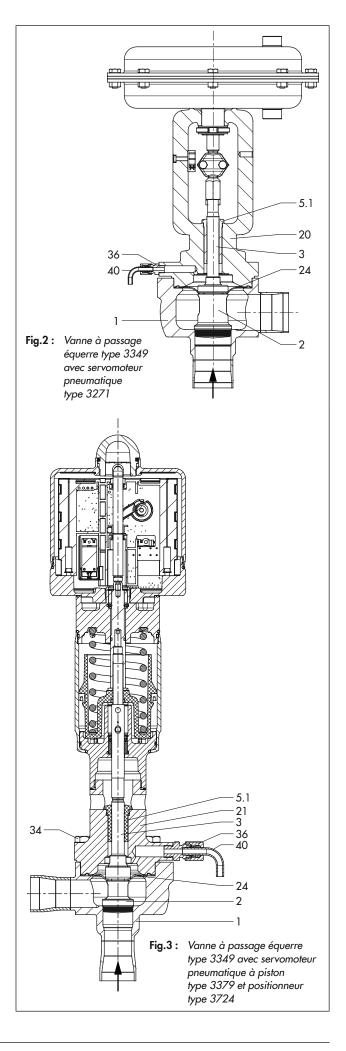
Exécution standard

Le fluide traverse la vanne de préférence dans le sens d'ouverture FTO (flow to open) 1), ou dans le sens de fermeture FTC (flow to close) 1). Le sens d'écoulement du fluide est indiqué par une flèche sur le corps de vanne. Le débit varie en fonction de la section libre entre le clapet et le siège usiné dans le corps et donc de la position du clapet. Dans les deux sens d'écoulement, la purge du corps de vanne s'effectue par le raccord latéral de la vanne.

Exécution microdébit

Le fluide traverse la vanne dans le sens indiqué par la flèche, c'est-à-dire dans le sens de fermeture FTC (flow to close) ¹⁾. Le débit varie en fonction de la section libre entre le clapet et le siège usiné dans le corps et donc de la position du clapet. **Presse-étoupe en option :** sur l'exécution avec presse-étoupe supplémentaire, l'orifice de contrôle est obturé par un bouchon.

Toutes les exécutions


L'étanchéité de la tige de clapet est assurée par la membrane sur toutes les exécutions.

Le raccord de contrôle sert à vérifier l'étanchéité de la membrane (sauf en cas d'utilisation du presse-étoupe). L'orifice de contrôle est équipé d'un tube qui permet d'évacuer sans danger le fluide en cas de fuite.

Position de sécurité

Selon la disposition des ressorts à l'intérieur du servomoteur pneumatique, deux positions de sécurité différentes sont possibles en cas de coupure de l'alimentation d'air :

- Tige de servomoteur sort par manque d'air (TS) :
 la vanne se ferme en cas de coupure de l'alimentation d'air.
- Tige de servomoteur entre par manque d'air (TE):
 la vanne s'ouvre en cas de coupure de l'alimentation d'air.
- FTO : flow to open (le fluide tend à ouvrir le clapet) FTC : flow to close (le fluide tend à fermer le clapet)

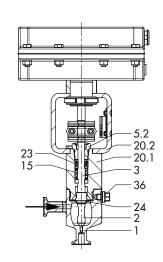


Fig.4: Vanne microdébit type 3349 avec servomoteur pneumatique type 3271

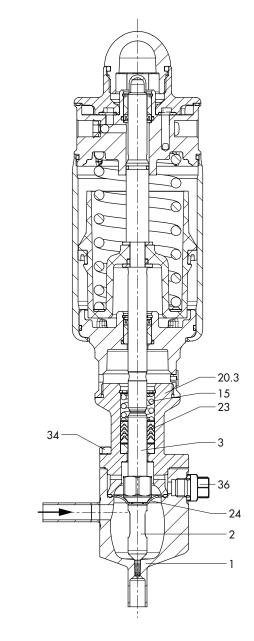


Fig.5: Vanne à passage équerre type 3349 avec servomoteur à piston pneumatique type 3379

Légende des Fig. 2 à Fig. 5

- 1 Corps
- 2 Clapet
- 3 Tige de clapet
- 5.1 Joint de tige
- 5.2 Douille filetée
- 15 Ressort
- 20 Lanterne standard avec servomoteur type 3271/3277
- 20.1 Chapeau de vanne sur exécution microdébit avec servomoteur type 3271/3277
- 20.2 Arcade sur exécution microdébit avec servomoteur type 3271/3277
- 20.3 Chapeau de vanne sur exécution microdébit avec servomoteur type 3379
 - 21 Chapeau de vanne standard avec servomoteur type 3379
 - 23 Garniture de presse-étoupe
 - 24 Membrane
 - 34 Vis
 - 36 Vis d'obturation ou raccord fileté
- 40 Tube

Tableau 1 : Caractéristiques techniques de la vanne type 3349

Exécution		DIN	ANSI				
Corps		Usiné d	ans la masse				
D'an Normania I	Exécution microdébit	DN 625	NPS 1/41				
Diamètre nominal	Exécution standard	DN 15100	NPS 1/24				
6	Exécution microdébit	10 bar	145 psi				
Pression Sans raccord	Exécution standard	25 bar ³⁾	360 psi ³⁾				
Avec raccord		Voir	Tableau 5				
	Classe de fuite selon	EN 60534-4	ANSI/FCI-70-2				
Étanchéité siège-clapet	Étanchéité métallique		IV				
	Étanchéité souple en PEEK 1)		VI				
Joint de la tige de clapet		Membrane PTFE	certifiée USP Class VI				
Caractéristique		Exponenti	elle ou linéaire				
Sens d'écoulement du	Exécution microdébit	FTC (flo	ow to close)				
fluide	Exécution standard	FTO (flow to open	n)/FTC (flow to close) 4)				
Coefficient de débit	Exécution microdébit	K _{vs} : 0,010,2	25/C _v : 0,0120,3				
Coefficient de debit	Exécution standard	K _{vs} : 0,41	60/C _v : 0,5190				
Rapport de réglage		Voir	Tableau 6				
Nettoyage		CIP (cleaning in place) ou SIP (sterilization in place)					
Servomoteurs		Voir Tableau 1					
Températures	Température de fonctionnement	-10 à 160 °C	14 à 320 °F				
admissibles 2)	Température de stérilisation	180 °C jusqu'à 30 min	356 °F jusqu'à 30 min				
	E. dama	Micro	billé verre				
	Externe	$R_{\alpha} \leq 0$,6 μm · Poli				
Rugosité et		$R_{\alpha} \leq 0.8$	µm · Usiné fin				
traitement de surface	Interne	$R_{\alpha} \leq 0$,6 μm · Poli				
	interne	$R_{\alpha} \leq 0.4$ k	um · Poli satiné				
		$R_{\alpha} \leq 0.4 \mu$	um · Poli miroir				
Dimensions des raccorde	ements par type	Voir T	ableau 12				
Certifications		Règlement (C Règlement (Règlement (C USP- A	itle 21 FDA E) n° 1935/2004 UE) n° 10/2011 E) n° 2023/2006 VI 121 °C DI-free standard 53-07, voir Tableau 2				
Conformité		C€·[H[

¹⁾ Exécution spéciale (non applicable à l'exécution microdébit)

Respectar les restrictions normatives, voir Tableau 5
Design mécanique : 25 bar ; Design fonctionnel : 20 bar (voir Tableau 4)
Avec le sens d'écoulement flow-to-close (FTC), la purge du corps de vanne doit aussi s'effectuer par le raccord latéral de la vanne.

Tableau 2 : Certifications en fonction des exécutions de vannes

Vanne			Type 3349				
Version matériel			HV01				
Exécution du corps			Usiné dans la masse				
	Diamètre nomi	nal DN/NPS	15100/½4				
	Coefficients de	débit K _{VS} /C _V	0,4160/0,5190				
	Chapeau		Chapeau de vanne boulonné				
		Embouts à souder	Toutes les normes				
		Raccord fileté	DIN 11864-1, forme A · DIN 11853-1, forme A · DIN 11851-2 1) · DIN 11887-1 1) · ISO 2853 1)				
	Raccordement	Raccord clamp	DIN 11864-3, forme A · DIN 11853-3, forme A · DIN 32676 ¹⁾ · ISO 2852 ¹⁾ · BS 4825 ¹⁾ · ASME BPE · NFE 29521 · JIS G3447 · JIS G3459				
Exécutions certifiées 3-A (53-07)		Raccord à brides (aseptique)	DIN 11864-2, forme A · DIN 11853-2, forme A				
	Matériau du co	orps	1.4435/316L et 1.4404/316L Série AISI 300, hormis 301, 302 et 303				
	Finition de surf	ace (intérieur)	$R_{\alpha} \le 0.8 \ \mu m$				
	Clapet		Clapet parabolique · Clapet V-Port				
	Étanchéité sièg	e-clapet	Étanchéité métallique · Étanchéité souple (PEEK)				
	Membrane		100 % PTFE				
	Divers		Servomoteur et accessoires avec montage 3-A				
	Diamètre nomi	nal DN/NPS	DN 15, 20, 25, 32, 40 ²⁾ , 50, 65 / NPS ½, ¾, 1, 1¼, 1½ ²⁾ , 2, 2½				
	Coefficients de	débit K _{VS} /C _V	0,4, 0,63, 1, 1,6, 2,5, 4, 6,3, 10, 16, 25 ²), 40, 60/ 0,5, 0,75, 1,2, 2, 3, 5, 7,5, 12, 20, 30 ²), 47, 70				
	Chapeau		Chapeau de vanne boulonné				
		Embouts à souder	Toutes les normes				
		Raccord fileté	DIN 11864-1, forme A · DIN 11853-1, forme A · DIN 11851-2 1) · ISO 2853 1)				
Exécutions avec	Raccordement	Raccord clamp	DIN 11864-3, forme A \cdot DIN 11853-3, forme A \cdot DIN 32676 $^{1)}$ \cdot ISO 2852 $^{1)}$ \cdot BS 4825 $^{1)}$				
certification EHEDG (type EL Class I)		Raccord à brides (aseptique)	DIN 11864-2, forme A · DIN 11853-2, forme A				
	Matériau du co	orps	1.4435/316L et 1.4404/316L				
	Finition de surf	ace (intérieur)	R _α ≤ 0,8 μm				
	Clapet		Clapet parabolique				
	Étanchéité sièg	e-clapet	étanchéité métallique				
	Détection de fu	ites	Oui				
	Membrane		100 % PTFE				

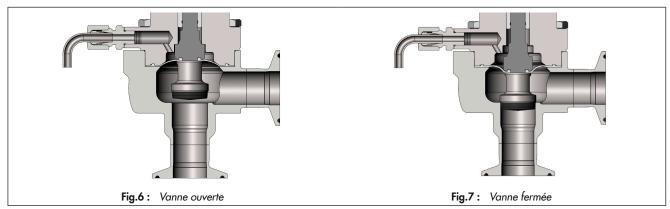
 $^{^{5)}}$ L'opérateur doit utiliser des joints conformes 3-A ou EHEDG. $^{6)}$ Hormis pour DN 40/NPS $11\!\!/_2$ et $\rm K_{VS}$ $25/C_{V}$ 30

Tableau 3: Matériaux 1)

Exécution		DIN	ANSI					
Corps		1.4435	316L					
Tige de clapet		1.4404	316L					
Clapet		1.4435	316L					
Membrane		PTFE						
	Vanne microdébit DN 6 à 25	1.4404	316L					
Chapeau	DN 15 à 65	1.4409	316L					
	DN 80/DN 100	1.4404	316L					
Guidage de la ti	ge de clapet	PTFE						
Vanne microdéb (exécution spécie	it : garniture de presse-étoupe ale)	РТ	TFE .					

¹⁾ Autres matériaux sur demande

Tableau 4 : Résistance de la membrane


SAMSON a contrôlé la durée de vie des membranes de la vanne à passage équerre type 3349. Dans le cadre de la maintenance, SAMSON recommande de remplacer la membrane après 300 000 courses. En fonction des conditions de fonctionnement (notamment de la pression et de la température du fluide), cet intervalle de maintenance peut être prolongé sur la base des retours de cas d'application individuels et à l'aide des tableaux suivants.

Étendue du contrôle Membranes de toutes tailles (vannes du DN 15 au DN 100)

Conditions de test 144 courses par minute (une course correspondant à une ouverture de 0 à 100 % ou de 100 à 0 %)

Test	Résultat
Vanne en contact permanent avec de l'eau à température ambiante soumise à une pression de 10 bar	Durée de vie moyenne : 1 000 000 courses Durée de vie minimale : 500 000 courses
Vanne en contact permanent avec de la vapeur à 160 °C et 6 bar pendant 3 h, puis à 180 °C et 10 bar pendant 1 h	Durée de vie minimale : 200 000 courses

	Vanne				
	DN 15/25	DN 32/65	DN 80/100		
	(OD 21,3/33,7)	(OD 42,4/76,1)	(OD 88,9/114,3)		
	NPS ½/1	NPS 11/4/21/2	NPS 3/4		
Durée de vie de la membrane à température ambiante avec une pression de 10 bar	3 600 000 courses	3 200 000 courses	600 000 courses		
Durée de vie de la membrane à 100 °C et 20 bar	500 000 courses	500 000 courses	400 000 courses		

Tableau 5 : Pressions maximales en bar : exécution standard (N) et exécution microdébit (M)
Les pressions maximales sont déterminées par la pression P_{max} indiquée dans la norme ou par la pression P_{max} de la vanne, la valeur retenue étant la valeur la plus faible.

		Vanne	DN 1)	8	10	15	20	25	32	40	50	65	80	100
			(OD) ²⁾	(13,5)	(17,2)	(21,3)	(26,9)	(33,7)	(42,4)	(48,3)	(60,3)	(76,1)	(88,9)	(114,3)
Raccorden	nent	T _{max} en °C	NPS	1/4	3/8	1/2	3/4	1	11/4	11/2	2	21/2	3	4
	DIN 11866 série A		P _{max} (N)	_	_	25	25	25	25	25	25	25	25	25
	(DIN 11850 série 2) (DIN EN 10357)	150	P _{max} (M)	10	10	10	10	10	_	ı	_	_	-	_
	DIN 11866 série B	150	P _{max} (N)	_	-	25	25	25	25	25	25	25	25	25
	DIN 11000 serie b	130	P _{max} (M)	10	10	10	10	10	-	-	-	-	-	_
	DIN 11866 série C	150	P _{max} (N)	_	_	25	25	25	_	25	25	25	25	25
	(ASME BPE)	130	P _{max} (M)		10	10	10	10		-	-	_	-	_
ē	DIN EN ISO 1127	_	P _{max} (N)	_	_	10 ³⁾								
) Onc	série 1	_	P _{max} (M)	10	10	10	10	10	-	-	-	-	-	_
Embouts à souder	SMS 3008		P _{max} (N)		_	10 ³⁾	_	10 ³⁾	_	10 ³⁾				
Ď.	3M3 3000	_	P _{max} (M)		10	10	_	10] _	-	-	_	-	_
E E	ISO 2037		P _{max} (N)		_	10 ³⁾								
_	130 2037	_	P _{max} (M)	_	10	10	10	10	-	-	-	-	-	_
	BS 4825 partie 1		P _{max} (N)				_	10 ³⁾		10 ³⁾				
	65 4625 partie 1	_	P _{max} (M)	_	_	_	_	10	_	ı	-	_	-	_
	JIS G 3347		P _{max} (N)					10 ³⁾	103)	103)				
	JIO G 334/	_	P _{max} (M)	_	_	_		10	-	-	-	-	-	_
	JIS G 3459		P _{max} (N)	-	-	10 ³⁾								
	JIS G 3439		P _{max} (M)	10	10	10	10	10	_	-	-	-	-	_

		Vanne	DN 1)	8	10	15	20	25	32	40	50	65	80	100
			(OD) ²⁾	(13,5)	(17,2)	(21,3)	(26,9)	(33,7)	(42,4)	(48,3)	(60,3)	(76,1)	(88,9)	(114,3)
Raccorden		T _{max} en °C	NPS	1/4	3/8	1/2	3/4	1	11/4	11/2	2	2 ½	3	4
	DIN 11864-1 GS et DIN 11853-1 GS	140	P _{max} (N)	_	_	25	25	25	25	25	25	25	25	25
	forme A, série A	140	P _{max} (M)		10	10	10	10	-	-	_	-	-	-
	DIN 11864-1 GS et DIN 11853-1 GS	140	P _{max} (N)	_	_	25	25	25	25	25	25	25	25	_
	forme A, série B	140	P _{max} (M)	_	_	10	10	10	_	_	_	_	_	_
etés	DIN 11864-1 GS et	1.40	P _{max} (N)					25		25	25	25	25	
h Sp	DIN 11853-1 GS forme A, série C	140	P _{max} (M)	_	_	_	_	10	_	_	_	-	-	-
Raccords filetés	SMS 1146	_	P _{max} (N)	_	_	_	_	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾
_	DIN 11851 série 2		P _{max} (M)			0.5	0.5	-	-	-	-	-	-	-
	pour tubes selon	140	P _{max} (N)	_	_	25	25	25	25	25	25	25	25	25
	DIN 11866 série A		P _{max} (M)			-	-	-	-	-	-	-	-	-
	ISO 2853	140	P _{max} (N) P _{max} (M)	_	_	_	_	25 -	25 -	25 -	25 -	25 -	25 -	_
	DIN 11864-3 NKS et		P _{max} (N)		-	25	25	25	25	25	25	25	16	16
	DIN 11853-3 NKS Forme A série A	140	P _{max} (M)	-	10	10	10	10	_	_	_	_	_	_
	DIN 11864-3 NKS		P _{max} (N)		_	25	25	25	25	25	25	16	16	_
	forme A série B	140	P _{max} (M)	_	10	10	10	10	-	-	_	_	-	-
	DIN 11864-3 NKS	140	P _{max} (N)	_	_	25	25	25	_	25	25	25	16	16
	forme A série C		P _{max} (M)			10	10	10		-	-	-	-	-
	DIN 32676 série A	140	P _{max} (N) P _{max} (M)	_	_	25 _	25 _	25 _	25 -	25 -	16	16 -	10	10
			P _{max} (N)			25	25	25	25	16	16	16	10	10
	DIN 32676 série B	140	P _{max} (M)	-	_	_	-	-	-	-	-	-	-	-
Clamp	DIN 32676 série C	140	P _{max} (N)	_	_	25	25	25	_	25	16	16	16	10
ס		140	P _{max} (M)			-	_	-		-	_	-	-	-
	BS 4825 partie 3	-	P _{max} (N) P _{max} (M)	-	-	-	_	10 ³⁾	-	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾
		20	P _{max} (N)			13,8	13,8	13,8		13,8	13,8	13,8	13,8	13,8
	ASME BPE	20	P _{max} (M)	_	_	_	_	_	_	_	_	_	_	-
		121	P _{max} (N)			11,4	11,4	11,4		11,4	11,4	11,4	10,4	8,6
			P _{max} (M) P _{max} (N)			_	_	- 10 ³⁾	10 ³⁾	- 10 ³⁾	- 10 ³⁾	- 10 ³⁾	- 10 ³⁾	10 ³⁾
	OSS pour JIS G 3447	-	P _{max} (M)	-	_	_	_	-	-	-	-	-	-	-
	000 110 0 2450		P _{max} (N)					10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾	10 ³⁾
	OSS pour JIS G 3459	-	P _{max} (M)		_	_	_	-	-	-	_	-	-	-
	DIN 11864-2 NF et DIN 11853-2 NF	140	P _{max} (N)	_	_	25	25	25	25	25	16	16	16	16
	forme A série A	140	P _{max} (M)		10	10	10	10	-	-	_	-	-	-
	DIN 11864-2 NF et	1.40	P _{max} (N)			25	25	25	16	16	16	16	16	10
	DIN 11853-2 NF forme A série B	140	P _{max} (M)	_	_	10	10	10	-	_	_	_	-	-
40	DIN 11864-2 NF et	1.40	P _{max} (N)			25	25	25		25	16	16	16	16
Bride	DIN 11853-2 NF forme A série C	140	P _{max} (M)	_	_	_	-	10	_	_	_	-	-	-
	PN 40	160	P _{max} (N)	_	_	25	25	25	25	25	25	25	25	25
	DIN EN 1092-1 B2	100	P _{max} (M)			_	_	_	_	_	_	_	-	_
	ol	20	P _{max} (N)	-	_	19	19	19		19	19	19	19	19
	Class 150 ASME B16.5		P _{max} (M)			14,5	14,5	145	_	14,5	14,5	14,5	14,5	14,5
		150	P _{max} (N) P _{max} (M)	_	_	14,5	14,5	14,5		14,5	14,5	14,5	14,5	14,5
1) DNI (DN 6 sur domando		max v···v			<u> </u>				<u> </u>	1			

¹⁾ DN 6 sur demande

Valeurs entre parenthèses selon DIN 11866 série B Pression supérieure sur demande

Tableau 6 : Coefficients de débit et rapports de réglage

Tableau 6.1 : K_{VS} et C_V pour l'exécution microdébit

			K _{vs}	0,01	0,016	0,025	0,04	0,063	0,1	0,16	0,25		
			C _v	0,012	0,02	0,03	0,05	0,075	0,12	0,2	0,3		
Clapet	standarc						Clapet	parabolique					
D.			Clapet parabolique	15:1	15:1 20:1 25:1 35:1 45:1 50:1								
Kappor	t de régl	age	Clapet V-port	Indisponible									
Ø siège en mm													
Ø siege	e en mm		Clapet V-port				Ind	isponible					
DN 1)	NPS	(OD) ²⁾	Course nominale										
8	1/4	(13,5)		•	•	•	•	•	•	•	•		
10	3/8	(17,2)		•	•	•	•	•	•	•	•		
15	1/2	(21,3)	7,5 mm	•	•	•	•	•	•	•	•		
20	3/4	(26,9)		•	•	•	•	•	• • •				
25	1	(33,7)		•	•	•	•	•	• • •				

¹⁾ DN 6 sur demande

Tableau 6.2 : K_{VS} et C_V pour l'exécution standard

			K _{vs}	0,4	0,63	1,0	1,6	2,5	4	6,3	10	6,3	10	16	25	40	60	80	100	160
			C _v	0,5	0,75	_	2	3	5	7,5	12	7,5	12	20	30	47	70	95	120	190
Clapet	standard	l						Clapet	paral	oolique	;						Clapet	V-por	t	
Rappor	t de régl	age	Clapet parabolique			50:1				50:1			50:1			50:1		lnc	Indisponible	
	·	Ü	Clapet V-port	Inc	lisponi	ble	50):1		50:1			50:1				50):1		
Ø siège	e en mm		Clapet parabolique		6			12		2	4		31		38	48	63	lnc	lisponi	ble
			Clapet V-port	Inc	disponi	ble	1	2	24	2	4		31		38	48	63	8	0	100
DN	NPS	(OD) 1)	Course nominale																	
15	1/2	(21,3)		•	•	•	•	•	•											
20	3/4	(26,9)	7,5	•	•	•	•	•	•											
25	1	(33,7)		•	•	•	•	•	•	•	•									
32	11/4	(42,4)										•	•	•						
40	11/2	(48,3)										•	•	•	•					
50	2	(60,3)	15									•	•	•	•	•				
65	21/2	(76,1)										•	•	•	•	•	•			
80	3	(88,9)										•	•	•	•	•	•			
80	3	(88,9)	20															•		
100	4	(114,3)	30														•	•	•	•

¹⁾ Valeurs entre parenthèses selon DIN 11866 série B

Tableau 7: Servomoteurs compatibles

Tableau 7.1: Servomoteurs pour l'exécution microdébit

	K _{vs}	0,01	0,016	0,025	0,04	0,063	0,1	0,16	0,25
Servomoteur	C _v	0,012	0,02	0,03	0,05	0,075	0,12	0,2	0,3
Type 3271/3277		•	•	•	•	•	•	•	•
Type 3379		•	•	•	•	•	•	•	•

Tableau 7.2 : Servomoteurs pour l'exécution standard

	K _{vs}	0,4	0,63	1	1,6	2,5	4	6,3	10	16	25	40	60	80	100	160
Servomoteur	C _v	0,5	0,75	1,2	2	3	5	7,5	12	20	30	47	70	95	120	190
Type 3271/3277	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Туре 3379		•	•	•	•	•	•	•	•	•	•	•		Indisp	onible	

²⁾ Valeurs entre parenthèses selon DIN 11866 série B

Tableau 8 : Pressions différentielles admissibles pour le type 3349 avec **position de sécurité tige sort par manque d'air** Étanchéité métallique (classe de fuite IV)

Tableau 8.1 : Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en bar

Diamètre	nominal	Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement en fern	bar pour p ₂ = 0 bar (vanne née)		
DN	NPS	en mm	K _{vs}	en cm ²	nominale en bar	Δp = 5 bar	Δp = 10 bar 1)		
1525	1/21	6	0,41,0						
1323	721	12	1,64,0	120	0,42,0	1,22,0	1,22,0		
25	1	24	6,310						
15 25	15 25 1/- 1		0,41,0						
1525	1/21	12	1,64,0	175v2	0,42,0	1,22,0	1,22,0		
25	1	24	6,310						
3265	11/421/2	31	6,316						
4065	11/221/2	38	25	250	0 (20	0 / 20	10.07		
5065	221/2	48	40	350	0,63,0	0,63,0	1,23,6		
65	21/2	63	60						
3265	11/421/2	31	6,316						
4065	11/221/2	38	25	255.2	0.4.20	10.00	10.00		
5065	221/2	48	40	355v2	0,42,0	1,22,0	1,22,0		
65	21/2	63	60						
80	3	80	80						
100	4	80	100	750v2	1,93,1	1,93,1	2,23,4		
100	100 4	100	100						

¹⁾ Pression supérieure sur demande

Tableau 8.2: Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en psi

		•	//		<i>,</i> , , , , , , , , , , , , , , , , , ,	•	
Diamètre	nominal	Ø siège Surface du servomoteur		Plage de pression nominale	Plage de fonctionnement en psi pour p ₂ = 0 psi (v fermée)		
DN	NPS	en mm	C _v	en cm ²	en psi	Δp = 73 psi	$\Delta p = 145 \text{ psi}^{-1}$
1525	1/21	6	0,51,2				
1323	721	12	25	120	630	1830	1830
25	1	24	7,512				
1525	1/21	6	0,51,2				
1323	721	12	25	175v2	630	1830	1830
25	1	24	7,512				
3265	11/421/2	31	7,520				
4065	11/221/2	38	30	350	944	944	10 50
5065	221/2	48	46	330	944	744	1853
65	21/2	63	70				
3265	11/421/2	31	7,520				
4065	11/221/2	38	30	355v2	630	1830	1830
5065	221/2	48	46	33302	030	1030	1030
65	21/2	63	70				
80	3	80	95				
100	4	80	120	750v2	2845	2845	3250
100	4	100	190				

¹⁾ Pression supérieure sur demande

Tableau 8.3 : Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en bar

Diamètre	nominal			Surface du			
DN 1)	NPS	Ø siège en mm	K _{vs}	servomoteur en cm ²	Plage de pression nominale en bar	Plage de fonctionnement en bar	Δp _{max} en bar
825 2)	1/41 2)	3	0,010,25	31	2,33,7	2,33,0	10
1525	1/21	6	0,41,0	31	2,33,7	2,33,0	7
1525	1/21	6	0,41,0	63	2,54,0	2,53,3	10 ³⁾
1525	1/21	12	1,64,0	31	2,33,7	2,33,0	7
1525	1/21	12	1,64,0	63	2,54,0	2,53,3	10 ³⁾
25	1	24	6,310	31	2,33,7	2,33,0	7
25	1	24	6,310	63	2,54,0	2,53,3	10 ³⁾
25	1	24	6,310	63	3,35,6	3,34,5	_
3250	11/42	31	6,316	63	3,35,6	3,35,6	7
4050	1½2	38	25	63	3,35,6	3,35,6	8
50	2	48	40	63	3,35,6	3,35,6	8

¹⁾ DN 6 sur demande

Tableau 8.4 : Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en psi

Diamètre	nominal			Surface du			
DN ¹⁾	NPS	Ø siège en mm	C _v	servomoteur en cm ²	Plage de pression nominale en psi	Plage de fonctionnement en psi	Δp _{max} en psi
825 2)	¹⁄₄1 ²)	3	0,010,3	31	3353	3343	145
1525	1/21	6	0,51,2	31	3353	3343	102
1525	1/21	6	0,51,2	63	3658	3647	145 ³⁾
1525	1/21	12	25	31	3353	3343	102
1525	1/21	12	25	63	3658	3647	145 ³⁾
25	1	24	7,512	31	3353	3343	102
25	1	24	7,512	63	3658	3647	145 ³⁾
25	1	24	7,512	63	4781	4765	_
3250	11/42	31	7,520	63	4781	4781	102
4050	1½2	38	30	63	4781	4781	116
50	2	48	47	63	4781	4781	116

¹⁾ DN 6 sur demande

²⁾ Exécution microdébit

³⁾ Pression supérieure sur demande

²⁾ Exécution microdébit

³⁾ Pression supérieure sur demande

Tableau 9 : Pressions différentielles admissibles pour le type 3349 avec **position de sécurité tige entre par manque d'air** Étanchéité métallique (classe de fuite IV)

Tableau 9.1 : Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en bar

Diamètre	nominal	Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement en fern	bar pour $p_2 = 0$ bar (vanne née)
DN	NPS	en mm	K _{vs}	en cm ²	nominale en bar	Δp = 5 bar	Δp = 10 bar 1)
1525	1/21	6	0,41,0				
1525	721	12	1,64,0	120	0,42,0	1,8	2,1
25	1	24	6,310		(plage de		
1525	1/21	6	0,41,0		fonctionnement		
1525	721	12	1,64,0	175v2	0,41,3)	1,6	1,8
25	1	24	6,310				
3265	11/421/2	31	6,316				
4065	11/221/2	38	25	250	0.0 1.02	1 /	0.1
5065	221/2	48	40	350	0,21,0 2)	1,6	2,1
65	21/2	63	60				
3265	11/421/2	31	6,316		0,42,0		
4065	11/221/2	38	25	355v2	(plage de	1.0	2.2
5065	221/2	48	40	33342	fonctionnement	1,8	2,3
65	21/2	63	60		0,41,3)		
80	3	80	80				
100	4	80	100	750v2	0,21,0 2)	2,1	3,0
100	4	100	100				

¹⁾ Pression supérieure sur demande

Tableau 9.2: Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en psi

Diamètre	nominal	Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement en psi pour p ₂ = 0 psi (vanne fermée)		
DN	NPS	en mm	C _v	en cm ²	nominale en psi	Δp = 73 psi	Δp = 145 psi ¹⁾	
1525	1/21	6	0,51,2					
1323	721	12	25	120	630	27	31	
25	1	24	7,512		(plage de			
1525	1/21	6	0,51,2		fonctionnement			
1323	721	12	25	175v2	618)	24	27	
25	1	24	7,512					
3265	11/421/2	31	7,520					
4065	11/221/2	38	30	350	315 ²⁾	24	30	
5065	221/2	48	46	330	313-	24	30	
65	21/2	63	70					
3265	11/421/2	31	7,520		630			
4065	11/221/2	38	30	355v2	(plage de	27	33	
5065	221/2	48	46	33342	fonctionnement	2/	33	
65	21/2	63	70		618)			
80	3	80	95					
100	4	80	120	750v2	315 ²⁾	31	44	
100	4	100	190					

¹⁾ Pression supérieure sur demande

La plage de fonctionnement correspond à la plage de pression nominale.

²⁾ La plage de fonctionnement correspond à la plage de pression nominale.

Tableau 9.3: Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en bar

Diamètre	nominal	Ø siège		Surface du	Dlama da associan	Plage de fonctionnement	Pression d'alimentation	
DN 1)	NPS	en mm	K _{vs}	servomoteur en cm ²	Plage de pression nominale en bar	en bar	requise	Δp _{max} en bar
825 3)	1/41 3)	3	0,010,25	31	2,33,7	3,03,7	6	9
1525	1/21	6	0,41,0	31	2,33,7	3,03,7	6	7
1525	1/21	6	0,41,0	63	1,01,9	1,51,9	3,4	10 ²⁾
1525	1/21	12	1,64,0	31	2,33,7	3,03,7	6	7
1525	1/21	12	1,64,0	63	1,01,9	1,51,9	3,4	10 ²⁾
25	1	24	6,310	31	2,33,7	3,03,7	6	7
25	1	24	6,310	63	1,01,9	1,51,9	3,9	10 ²⁾
3250	11/42	31	4 2 14	63	10 10	10 10	5,6	7
3230	1 '/4Z	31	6,316	03	1,01,9	1,01,9	6	8
							5,2	7
4050	11/22	38	25	63	1,01,9	1,01,9	5,6	8
							6	9
							5,3	7
50	2	48	40	63	1,01,9	1,01,9	5,7	8
							6	9

¹⁾ DN 6 sur demande

Tableau 9.4 : Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en psi

Diamètre	nominal	Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement	Pression d'alimentation	
DN 1)	NPS	en mm	C _v	en cm ²	nominale en psi	en psi	requise	Δp _{max} en psi
825 3)	1/41 3)	3	0,010,3	31	3353	4353	87	130
1525	1/21	6	0,51,2	31	3353	4353	87	102
1525	1/21	6	0,51,2	63	1427	2127	49	145 ²⁾
1525	1/21	12	25	31	3353	4353	87	102
1525	1/21	12	25	63	1427	2127	49	145 ²⁾
25	1	24	7,512	31	3353	4353	87	102
25	1	24	7,512	63	1427	2127	56	145 ²⁾
3250	11/42	31	7.5. 20	63	1427	2127	81	102
3230	1 74Z	31	7,520	03	142/	212/	87	116
							75	102
4050	11/22	38	30	63	1427	2127	81	116
							87	130
							76	102
50	2	48	47	63	1427	2127	82	116
							87	130

¹⁾ DN 6 sur demande

²⁾ Pression supérieure sur demande

³⁾ Exécution microdébit

²⁾ Pression supérieure sur demande

³⁾ Exécution microdébit

Tableau 10 : Pressions différentielles admissibles pour le type 3349 avec **position de sécurité tige sort par manque d'air** Étanchéité souple avec PEEK (classe de fuite VI)

Tableau 10.1: Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en bar

Diamètre nominal		Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement en bar pour p ₂ = 0 bar (vanne fermée)		
DN	NPS	en mm	K _{vs}	en cm ²	nominale en bar	Δp = 5 bar	Δp = 10 bar 1)	
3265	11/421/2	31	6,316					
4065	11/221/2	38	25	350	1,23,6	1004	01 22	
5065	221/2	48	40	330	1,23,0	1,23,6	2,13,3	
65	21/2	63	60					
3265	11/421/2	31	6,316					
4065	11/221/2	38	25	255.0	10.27	24.27	24.27	
5065	221/2	48	40	355v2	1,23,6	2,43,6	2,43,6	
65	21/2	63	60					
80	3	80	80					
100	4	80	100	750v2	1,93,1	1,93,1	2,54,2	
100	4	100	100					

¹⁾ Pression supérieure sur demande

Tableau 10.2 : Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en psi

Diamètre nominal		Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement er fern	n psi pour p ₂ = 0 psi (vanne née)
DN	NPS	en mm	C _v	en cm ²	nominale en psi	Δp = 73 psi	$\Delta p = 145 \text{ psi}^{-1}$
3265	11/421/2	31	7,520				
4065	11/221/2	38	30	350	1853	1853	3148
5065	221/2	48	46	330	1055	1033	3140
65	21/2	63	70				
3265	11/421/2	31	7,520				
4065	11/221/2	38	30	355v2	1853	3553	3553
5065	221/2	48	46	333VZ	1833	3533	3533
65	21/2	63	70				
80	3	80	95				
100	4	80	120	750v2	2845	2845	3761
100	4	100	190				

¹⁾ Pression supérieure sur demande

Tableau 10.3 : Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en bar

Diamètre	nominal			Surface du			
DN 1)	NPS	Ø siège en mm	K _{vs}	servomoteur en cm ²	Plage de pression nominale en bar	Plage de fonctionnement en bar	Δp _{max} en bar
825 3)	1/41 3)	3	0,010,25	31	2,33,7	2,33,0	_
1525	1/21	6	0,41,0	31	2,33,7	2,33,0	7
1525	1/21	6	0,41,0	63	2,54,0	2,53,3	10 2)
1525	1/21	12	1,64,0	31	2,33,7	2,33,0	6
1525	1/21	12	1,64,0	63	2,54,0	2,53,3	10 2)
25	1	24	6,310	31	2,33,7	2,33,0	_
25	1	24	6,310	63	2,54,0	2,53,3	8
25	1	24	6,310	63	3,35,6	3,34,5	10 2)
3250	11/42	31	6,316	63	3,35,6	3,35,6	4
4050	11/22	38	25	63	3,35,6	3,35,6	4
50	2	48	40	63	3,35,6	3,35,6	3

DN 6 sur demande

Tableau 10.4 : Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en psi

Diamètre	nominal			Surface du			
		Ø siège		servomoteur	Plage de pression	Plage de fonctionnement	
DN 1)	NPS	en mm	C _v	en cm ²	nominale en psi	en psi	Δp _{max} en psi
825 3)	¹¼1 ³)	3	0,010,3	31	3353	3343	_
1525	1/21	6	0,51,2	31	3353	3343	102
1525	1/21	6	0,51,2	63	3658	3647	145 ²⁾
1525	⅓1	12	25	31	3353	3343	87
1525	1/21	12	25	63	3658	3647	145 ²⁾
25	1	24	7,512	31	3353	3343	_
25	1	24	7,512	63	3658	3647	116
25	1	24	7,512	63	4781	4765	145 ²⁾
3250	11/42	31	7,520	63	4781	4781	58
4050	11/22	38	30	63	4781	4781	58
50	2	48	47	63	4781	4781	43

DN 6 sur demande

Pression supérieure sur demande Exécution microdébit

Pression supérieure sur demande Exécution microdébit

Tableau 11 : Pressions différentielles admissibles pour le type 3349 avec **position de sécurité tige entre par manque d'air** · Étanchéité souple avec PEEK (classe de fuite VI)

Tableau 11.1: Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en bar

Diamètre	nominal	Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement en bar pour p ₂ = 0 bar (vanne fermée)		
DN	NPS	en mm	K _{vs}	en cm ²	nominale en bar	Δp = 5 bar	Δp = 10 bar 1)	
1525	1/21	6	0,41,0					
1323	721	12	1,64,0	120	0,42,0	2,2	3,1	
25	1	24	6,310		(plage de			
1525	1/21	6	0,41,0		fonctionnement			
1323	721	12	1,64,0	175v2	0,41,2)	1,9	2,6	
25	1	24	6,310					
3265	11/421/2	31	6,316					
4065	11/221/2	38	25	350	0,21,0 2)	2.0	20	
5065	221/2	48	40	330	0,21,0-	2,0	2,8	
65	21/2	63	60					
3265	11/421/2	31	6,316		0,42,0			
4065	11/221/2	38	25	355v2	(plage de	2.2	2,9	
5065	221/2	48	40	33302	fonctionnement	2,2	2,9	
65	21/2	63	60		0,41,2)			
80	3	80	80					
100	4	80	100	750v2	0,21,0 2)	2,2	3,2	
100	4	100	100					

¹⁾ Pression supérieure sur demande

Tableau 11.2: Vanne de régulation type 3349 avec servomoteur type 3271/3277 · Pressions en psi

						·			
Diamètre	nominal	Ø siège		Surface du servomoteur	Plage de pression	Plage de fonctionnement er fern	n psi pour p ₂ = 0 psi (vanne née)		
DN	NPS	en mm	C _v	en cm ²	nominale en psi	Δp = 73 psi	$\Delta p = 145 \text{ psi}^{-1}$		
1525	1/21	6	0,51,2						
1323	721	12	25	120	630	32	45		
25	1	24	7,512		(plage de				
1525	1/21	6	0,51,2		fonctionnement				
1323	721	12	25	175v2	618)	28	38		
25	1	24	7,512						
3265	11/421/2	31	7,520						
4065	11/221/2	38	30	350	315 ²⁾	30	41		
5065	221/2	48	46	330	313-	30	41		
65	21/2	63	70						
3265	11/421/2	31	7,520		630				
4065	11/221/2	38	30	355v2	(plage de	32	43		
5065	221/2	48	46	33342	fonctionnement	JZ	45		
65	21/2	63	70		618)				
80	3	80	95						
100	4	80	120	750v2	315 ²⁾	32	47		
100	4	100	190						

¹⁾ Pression supérieure sur demande

La plage de fonctionnement correspond à la plage de pression nominale.

²⁾ La plage de fonctionnement correspond à la plage de pression nominale.

Tableau 11.3: Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en bar

Diamètre	nominal			Surface du		Plage de	Pression	
DN ¹⁾	NPS	Ø siège en mm	K _{vs}	servomoteur en cm ²	Plage de pression nominale en bar	fonctionnement en bar	d'alimentation requise	Δp _{max} en bar
825 3)	1/41 3)	3	0,010,25	31	2,33,7	3,03,7	-	-
1525	1/21	6	0,41,0	31	2,33,7	3,03,7	6	7
1525	1/21	6	0,41,0	63	1,01,9	1,51,9	3,6	10 ²⁾
1525	1/21	12	1,64,0	31	2,33,7	3,03,7	6	6
1525	1/21	12	1,64,0	63	1,01,9	1,51,9	3,8	10 ²⁾
25	1	24	6,310	31	2,33,7	3,03,7	_	_
25	1	24	6,310	63	1,01,9	1,51,9	4,8	10 ²⁾
3250	11/42	31	6,316	63	1,01,9	1,01,9	6	5
4050	1½2	38	25	63	1,01,9	1,01,9	6	5
50	2	48	40	63	1,01,9	1,01,9	6	4

 Tableau 11.4 : Vanne de régulation type 3349 avec servomoteur type 3379 · Pressions en psi

Diamètre	nominal			Surface du		Plage de	Pression	
DN 1)	NPS	Ø siège en mm	C _v	servomoteur en cm ²	Plage de pression nominale en psi	fonctionnement en psi	d'alimentation requise	Δp _{max} en psi
825 3)	1/41 3)	3	0,010,3	31	3353	4353	-	-
1525	1/21	6	0,51,2	31	3353	4353	87	102
1525	1/21	6	0,51,2	63	1427	2127	52	145 ²⁾
1525	1/21	12	25	31	3353	4353	87	87
1525	1/21	12	25	63	1427	2127	55	145 ²⁾
25	1	24	7,512	31	3353	4353	-	_
25	1	24	7,512	63	1427	2127	69	145 ²⁾
3250	11/42	31	7,520	63	1427	2127	87	72
4050	11/22	38	30	63	1427	2127	87	72
50	2	48	47	63	1427	2127	87	58

DN 6 sur demande

DN 6 sur demande Pression supérieure sur demande

Exécution microdébit

Pression supérieure sur demande

Exécution microdébit

Tableau 12: Dimensions et poids · Dimensions en mm · Poids en kg

Tableau 12.1: Vanne type 3349 en exécution standard

	DN	15	20	25	32	40	50	65	80	100
Vanne	(OD) 1)	(21,3)	(26,9)	(33,7)	(42,4)	(48,3)	(60,3)	(76,1)	(88,9)	(114,3)
	NPS		3/4	1	11/4	11/2	2	2 ½	3	4
	avec servomoteur type									
H1	3271/3277	234	231	228	262	260	271	271	336	348
П	3379	90	90	90	136	136	136	-	-	-
G	3271/3277	86	86	86	113	113	113	113	155	155
G	3379	85	85	85	113	113	113	-	_	-
Poids de la vanne sans	Diamètre du siège (SB)	6/12	6/12	6/12/24	31	31/38	31/38/ 48	31/38/ 48/63	38/48/ 63/80	63/80/ 100
servomoteur DIN 11866	3271/3277	5			12			4	38	44
série A	3379	3			11			_	_	_

¹⁾ Valeurs entre parenthèses selon DIN 11866 série B

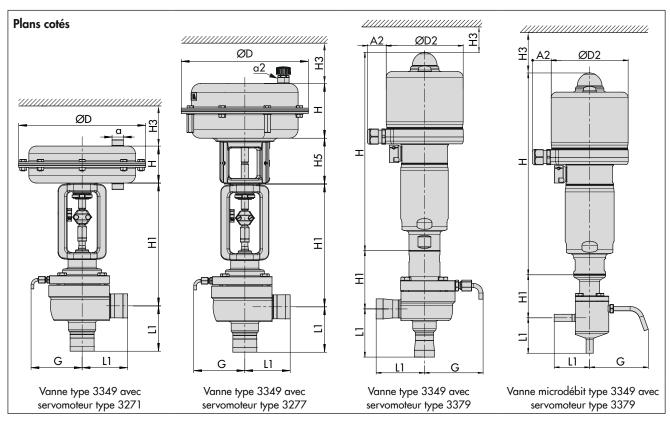
Tableau 12.2: Vanne type 3349 en exécution microdébit

		DN 1)	8	10	15	20	25			
Vanne		(OD) ²⁾	(13,5)	(17,2)	(21,3)	(26,9)	(33,7)			
		NPS	1/4	3/8	1/2	3/4	1			
	avec se	ervomoteur type								
	3271/3	3277		sur demande						
H1		DIN 11866 série A	61	61	65	65	70			
	3379	DIN 11866 série B	61	65	65	70	70			
		DIN 11866 série C	-	61	61	65	70			
	3271/3	3277			sur demande					
		DIN 11866 série A			83					
G	3379	DIN 11866 série B	83							
		DIN 11866 série C	-		8	3				
	3271/	3277	sur demande							
Poids de la		DIN 11866 série A			1					
vanne sans servomoteur	3379	DIN 11866 série B	1							
	·-	DIN 11866 série C	1							

¹⁾ DN 6 sur demande

Tableau 12.3: Servomoteurs pneumatiques types 3271 et 3277

Surface du	servomoteur	cm ²	120	175v2	240	350	355v2	700	750v2				
Ø membran	е	mm	168	215	240	280	280	390	394				
H 1)		mm	69	78	62	82	121	199	236				
H3 ²⁾ mr			110	110	110	110	110	190	190				
H5	Туре 3277	mm	88	101	101	101	101	101	101				
Ethan	Туре 3271			M30 × 1,5									
Filetage	Туре 3277			M30 × 1,5									
а	Туре 3271		G 1/8 (1/8 NPT)	G ¼ (¼ NPT)	G ¼ (¼ NPT)	G % (% NPT)							
a2	Туре 3277		-	G %	G %	G %	G %	G %	G %				
Da: da	Туре 3271		2,5	6	5	8	15	22	36				
Poids -	Туре 3277		3,2	10	9	12	19	26	40				


Hauteur avec anneau de levage soudé ou hauteur de l'anneau selon DIN 580. La hauteur du crochet de levage peut varier ; servomoteurs jusqu'à 355v2 cm² sans anneau de levage. Hauteur de dégagement minimale requise pour le démontage du servomoteur.

Valeurs entre parenthèses selon DIN 11866 série B

Tableau 12.4: Servomoteur pneumatique type 3379

Servomoteur	Sans pos	itionneur	Avec positionneur type 3724			
Surface du servomoteur cm²	31	63	31	63		
Diamètre du servomoteur ØD2	69	96	107			
Hauteur H	19	95	285			
Hauteur H3 1)	1:	50	1:	50		
Longueur A2	20 30					
Poids	1,8	3,1	3,2 4,4			

¹⁾ Hauteur de dégagement minimale requise pour le démontage du servomoteur.

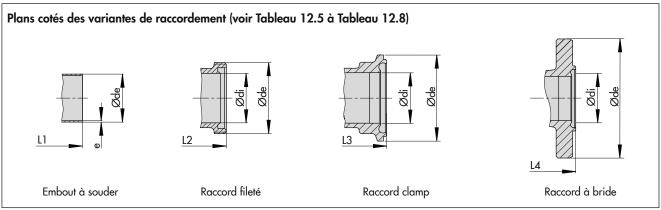


Tableau 12.5: Embouts à souder · Exécution standard (N) et exécution microdébit (M)

	DN 1)	8	10	15	20	25	32	40	50	65	80	100
Vanne	(OD) ²⁾	(13,5)	(17,2)	(21,3)	(26,9)	(33,7)	(42,4)	(48,3)	(60,3)	(76,1)	(88,9)	(114,3)
	NPS	1/4	3/8	1/2	3/4	1	11/4	11/2	2	2 ½	3	4
	L1 (N)	_	-	70	70	70	100	100	100	100	155	155
DIN 11866 série A	L1 (M)	50	50	50	50	50	_	_	_	_	_	_
(DIN 11850 série 2)	$-$ Ød $_{i}$	8	10	16	20	26	32	38	50	66	81	100
(DIN EN 10357)	$-$ Ød $_{\rm e}$	10	13	19	23	29	35	41	53	70	85	104
	е	1	1,5	1,5	1,5	1,5	1,5	1,5	1,5	2	2	2
	L1 (N)	_	_	70	70	70	100	100	100	100	155	155
	L1 (M)	50	50	50	50	50	_	_	-	_	_	_
DIN 11866 série B	$-$ Ød $_{i}$	10,3	14	18,1	23,7	29,7	38,4	44,3	56,3	72,1	84,3	109,7
	Ød	13,5	17,2	21,3	26,9	33,7	42,4	48,3	60,3	76,1	88,9	114,3
	е	1,6	1,6	1,6	1,6	2	2	2	2	2	2,3	2,3
	L1 (N)	-	_	70	70	70		100	100	100	155	155
	L1 (M)		50	50	50	50		_	_	_	_	_
DIN 11866 série C	Ød;	_	4,57	9,4	15,75	22,1	_	34,8	47,5	60,2	72,9	97,38
(ASME BPE)	Ød		6,35	12,7	19,05	25,4	-	38,1	50,8	63,5	76,2	101,6
	e		0,89	1,65	1,65	1,65	-	1,65	1,65	1,65	1,65	2,11
	L1 (N)	_	_	70	70	70	100	100	100	100	155	155
	L1 (M)	50	50	50	50	50	_	_	_	_	_	_
ISO 1127 série 1		10,3	14	18,1	23,7	29,7	38,4	44,3	56,3	10,9	83,7	109,1
	$\varnothing d_{e}$	13,5	17,2	21,3	26,9	33,7	42,4	48,3	60,3	76,1	88,9	114,3
	e	1,6	1,6	1,6	1,6	2	2	2	2	2,6	2,6	2,6
	L1 (N)	.,0	_	70	.,0	70	100	100	100	100	155	155
	L1 (M)		50	50		50	_	_	_	_	_	_
SMS 3008	$\frac{Z I_{i} V I_{i}}{Ød_{i}}$	_	10	16	_	22,6	31,3	35,6	48,6	60,3	72,9	97,6
	$-\frac{2}{\mathbb{Q}_{d_{e}}}$		12	18	_	25	33,7	38	51	63,5	76,1	101,6
	e e		1	1		1,2	1,2	1,2	1,2	1,6	1,6	2
	L1 (N)		_	70	70	70	100	100	100	100	155	155
	L1 (M)		50	50	50	50	-	_	_	-	_	-
ISO 2037	$\frac{ZI(W)}{Ød_{i}}$	_	10	15,2	19,3	22,6	31,3	35,6	48,6	60,3	72,9	97,6
100 2007	$-\frac{\mathcal{D}d_i}{\mathcal{O}d_e}$		12	17,2	21,3	25	33,7	38	51	63,5	76,1	101,6
	e e		1	1	1	1,2	1,2	1,2	1,2	1,6	1,6	2
	L1 (N)		'	70	70	70	1,2	100	100	100	155	155
	L1 (M)			-	-	50	_	-	-	-	-	-
BS 4825 partie 1	$\frac{D(\mathcal{W})}{Ød_{i}}$	_	_	13,48	16,65	22,2		34,9	47,6	60,3	73	97,6
55 4025 partie 1	$-\frac{\mathcal{D}d_i}{\mathcal{O}d_e}$			15,88	19,05	25,4	_	38,1	50,8	63,5	76,2	101,6
	e e			1,2	1,2	1,6	-	1,6	1,6	1,6	1,6	2
	L1 (N)			1,4	1,4	70	100	100	100	100	1,5	155
	L1 (M)					50	-	-	-	-	-	133
JIS G 3447	$\mathbb{Z}^{LT}(M)$	_	_	_	_	23	29,4	35,7	47,8	59,5	72,3	97,6
JO O 344/	$-\frac{Ød_{i}}{Ød_{e}}$	-	_	_		25,4	31,8	38,1	50,8	63,5	76,3	101,6
						1,2	1,2	1,2	1,5	2	2	2
	e 11 (NI)		_	70	70	70	100	1,2	1,3	100	155	155
	L1 (N)	50	50	50	50	50	100	100	100	100	155	155
JIS G 3459	TJ (W)		14,9		23,9	30,7	20.4			72 1		1101
ло G 3437	$\frac{\text{Qd}_{i}}{\text{Qd}_{i}}$	11,4		18,4		30,7	39,4	45,3	57,2	72,1	84,9	110,1
	$-$ Ød $_{\rm e}$	13,8	17,3	21,7	27,2		42,7	48,6	60,5	76,3	89,1	114,3
	е	1,2	1,2	1,65	1,65	1,65	1,65	1,65	1,65	2,1	2,1	2,1

¹⁾ DN 6 sur demande

²⁾ Valeurs entre parenthèses selon DIN 11866 série B

Tableau 12.6 : Raccords filetés · Exécution standard (N) et exécution microdébit (M)

	DN 1)	8	10	15	20	25	32	40	50	65	80	100
Vanne	(OD) ²⁾	(13,5)	(17,2)	(21,3)	(26,9)	(33,7)	(42,4)	(48,3)	(60,3)	(76,1)	(88,9)	(114,3)
	NPS	1/4	3/8	1/2	3/4	1	11/4	11/2	2	21/2	3	4
DIN 11864-	L2 (N)		_	70	70	70	100	100	100	100	155	155
1 GS et	L2 (M)		50	50	50	50	_	_	-	-	-	-
DIN 11853-		_	10	16	20	26	32	38	50	66	81	100
1 GS forme A série A	Ød _e		Rd 28 ×	Rd 34 ×	Rd 44 ×	Rd 52 ×	Rd 58 ×	Rd 65 ×	Rd 78 ×	Rd 95 × 1/6"	Rd 110 × 1/4"	Rd 130 × 1/4"
DIN 11864-	L2 (N)			70	70	70	100	100	100	100	155	
1 GS et	L2 (M)			50	50	50	_	-	-	-	-	
DIN 11853-	$Ød_{i}$	_	_	18,1	23,7	29,7	38,4	44,3	56,3	72,1	84,3	_
1 GS forme A série B	Ød _e			Rd 44 ×	Rd 52 ×	Rd 58 ×	Rd 65 ×	Rd 78 ×	Rd 95 ×	Rd 110 × ¼"	Rd 130 × 1/4"	
DIN 11864-	L2 (N)					70		100	100	100	155	ı
1 GS et DIN 11853- 1 GS forme A série C	L2 (M)					50		_	_	_	-	_
		_	_	_	_	22,1	_	34,8	47,5	60,2	72,9	97,38
	Ød _e					Rd 52 ×		Rd 65 ×	Rd 78 ×	Rd 95 × 1/6"	Rd 110 × ¼"	Rd 130 × 1⁄4"
	L2 (N)					70	100	100	100	100	155	155
	L2 (M)					_	_	-	-	-	-	-
SMS 1146	$Ød_{i}$	_	_	_	_	22,6	29,6	35,6	48,6	60,3	72,9	100
	$\varnothing d_e$					Rd 40 ×	Rd 48 ×	Rd 60 ×	Rd 70 ×	Rd 85 × 1/6"	Rd 98 ×	Rd 125 × 1/4"
	L2 (N)			70	70	70	100	100	100	100	155	155
DIN 11851	L2 (M)			-	-	-	_	_	-	-	-	-
pour tubes selon DIN 11866		_	_	16	20	26	32	38	50	66	81	100
série A	$Ød_e$			Rd 34 ×	Rd 44 ×	Rd 52 ×	Rd 58 ×	Rd 65 ×	Rd 78 ×	Rd 95 × 1/6"	Rd 110 × ¼"	Rd 130 × 1/4"
	L2 (N)					70	100	100	100	100	155	
	L2 (M)					-	-	-	-	-	-	
ISO 2853	$Ød_{i}$	_	_	_	_	22,6	31,3	35,6	48,6	60,3	72,9	_
	$ \emptyset d_{e} $					Rd 37 ×	Rd 45,9 × 1/8"	Rd 50,6 × 1/8"	Rd 64,1 × 1/8"	Rd 77,6 ×	Rd 91,1 ×	

¹⁾ DN 6 sur demande

²⁾ Valeurs entre parenthèses selon DIN 11866 série B

Tableau 12.7 : Raccords clamp · Exécution standard (N) et exécution microdébit (M)

	DN 1)	8	10	15	20	25	32	40	50	65	80	100
Vanne	(OD) ²⁾	(13,5)	(17,2)	(21,3)	(26,9)	(33,7)	(42,4)	(48,3)	(60,3)	(76,1)	(88,9)	(114,3)
	NPS	1/4	3/8	1/2	3/4	1	11/4	11/2	2	21/2	3	4
	L3 (N)		_	60,3	60,3	60,3	88,9	88,9	88,9	88,9	150	150
DIN 11864-3 NKS et	L3 (M)		50	50	50	50	_	_	_	_	_	_
DIN 11853-3 forme A série A	- Ød;	-	10	16	20	26	32	38	50	66	81	100
Serie / C	Ød		34	34	50,5	50,5	50,5	64	77,5	91	106	130
	L3 (N)		_	60,3	60,3	60,3	88,9	88,9	88,9	88,9	150	_
DIN 11864-3 NKS	L3 (M)		50	50	50	50	_	_	_	_	_	_
forme A série B	$\emptyset d_i$	_	14	18,1	23,7	29,7	38,4	44,3	56,3	72,1	84,3	_
	Ød _e		34	34	50,5	50,5	64	64	91	106	119	_
	L3 (N)			60,3	60,3	60,3		88,9	88,9	88,9	150	150
DIN 11864-3 NKS	L3 (M)			50	50	50		_	-	_	_	_
forme A série C	$\overline{\text{Ød}}_{i}$	_	_	9,4	15,75	22,1	_	34,8	47,5	60,2	72,9	97,38
	Øde			34	34	50,5		64	77,5	91	106	130
	L3 (N)			60,3	60,3	60,3	88,9	88,9	88,9	88,9	150	150
	L3 (M)			_	-	_	-	-	-	-	-	-
DIN 32676 série A	$-$ Ød $_{i}$	_	_	16	20	26	32	38	50	66	81	100
	Øde			34	34	50,5	50,5	50,5	64	91	106	119
	L3 (N)		_	60,3	60,3	60,3	88,9	88,9	88,9	88,9	150	150
DIN 32676 série B	L3 (M)		_	-	-	_	-	_	-	_	_	-
	$-$ Ød $_{i}$	_	_	18,1	23,7	29,7	38,4	44,3	56,3	72,1	84,3	109,7
	$\varnothing d_e$		_	50,5	50,5	50,5	64	64	77,5	91	106	130
	L3 (N)		-	60,3	60,3	60,3		88,9	88,9	88,9	150	150
DIN 1 207777 7 7 7 6	L3 (M)		_	_	-	_]	_	_	_	_	_
DIN 32676 série C	$\mathbb{Z}_{d_{i}}$	_	_	9,4	15,75	22,1	-	34,8	47,5	60,2	72,9	97,38
	$\varnothing d_{e}$		_	25	25	50,5		50,5	64	77,5	91	119
	L3 (N)					60,3		88,9	88,9	88,9	150	150
DC 4005 1: 0	L3 (M)					_]	_	-	_	_	_
BS 4825 partie 3	$\overline{\text{Ød}_i}$	_	_	_	_	22,2	_	34,9	47,6	60,3	73	97,6
	$\varnothing d_e$					50,5]	50,5	64	77,5	91	119
	L3 (N)			60,3	60,3	60,3		88,9	88,9	88,9	150	150
A CAAE DDE	L3 (M)			_	-	-		-	-	-	_	-
ASME BPE	$\operatorname{Ød}_{i}$	_	_	9,4	15,75	22,1	_	34,8	47,5	60,2	72,9	97,38
	$Ød_e$			25	25	50,5		50,5	64	77,5	91	119
	L3 (N)					60,3	88,9	88,9	88,9	88,9	150	150
OSS pour JIS G 3447	L3 (M)					ı	_	_	_	_	_	_
000 pour 113 G 3447	$\operatorname{Ød}_{i}$	_	_	_	_	23	29,4	35,7	47,8	59,5	72,3	97,6
	Øde					50,5	50,5	50,5	64	77,5	91	119
	L3 (N)					60,3	88,9	88,9	88,9	88,9	150	150
OSS pour JIS G 3459	L3 (M)					_	_	-	_	_	_	_
033 pour 113 G 3439	$\emptyset d_i$	-	-	-	-	30,7	39,4	45,3	57,2	72,1	84,9	110,1
	Ød _e					50,5	50,5	50,5	64	77,5	91	119

DN 6 sur demande
Valeurs entre parenthèses selon DIN 11866 série B

Tableau 12.8: Raccords à brides · Exécution standard (N) et exécution microdébit (M)

	DN 1)	8	10	15	20	25	32	40	50	65	80	100
Vanne	(OD) ²⁾	(13,5)	(17,2)	(21,3)	(26,9)	(33,7)	(42,4)	(48,3)	(60,3)	(76,1)	(88,9)	(114,3)
	NPS	1/4	3/8	1/2	3/4	1	11/4	11/2	2	21/2	3	4
	L4 (N)		ı	90	95	100	105	115	125	145	155	175
DIN 11864-2 NF et DIN 11853-2 NF	L4 (M)	_	90	90	95	100	_	_	_	_	_	_
forme A série A	$\underline{\hspace{1cm} \hspace{1cm} \hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}$		10	16	20	26	32	38	50	66	81	100
	$Ød_e$		54	59	64	70	76	82	94	113	133	159
	L4 (N)			90	95	100	105	115	125	145	155	175
DIN 11864-2 NF et DIN 11853-2 NF	L4 (M)			90	95	100	_	_	-	_	1	_
forme A série B	$\varnothing d_i$	_	_	18,1	23,7	29,7	38,4	44,3	56,3	71,1	84,3	109,7
	$\operatorname{Ød}_{\operatorname{e}}$			62	69	74	82	88	103	125	137	168
	L4 (N)			100	100	100		115	125	145	155	175
DIN 11864-2 NF et DIN 11853-2 NF	L4 (M)		_	-	-	100		_	-	-	-	_
forme A série C	$\varnothing d_i$	_	_	9,4	15,75	22,1	_	34,8	47,5	60,2	72,9	97,38
	$Ød_e$			54	59	66		79	92	107	125	157
	L4 (N)			90	95	100	105	115	125	145	155	175
PN 40 :	L4 (M)			-	1	1	_	_	-	_	1	_
DIN EN 1092-1 B2	$\varnothing d_i$	_	_	16	20	26	32	38	50	66	81	100
	$\operatorname{Ød}_{\operatorname{e}}$			95	105	115	140	150	165	185	200	220
	L4 (N)			90	95	100		115	125	145	155	175
Class 150 :	L4 (M)	-		-	-	-		_	-	-	-	_
ASME B16.5	$\varnothing d_i$		-	-	-	-	-	_	-	-	-	_
	$Ød_e$			-	-	-		-	-	-	-	-

DN 6 sur demande

Texte de commande

Vanne de régulation pour fonctionnement Type 3349 avec membrane USP-VI

aseptique Exécution du corps

Exécution standard ou microdébit

Diamètre nominal K_{vs}/C_v

DN ... ou NPS ... ou OD ...

Étanchéité du clapet

Métallique ou souple

Raccordement

Embouts à souder, raccords filetés,

raccords clamp ou à brides

Caractéristique

Exponentielle ou linéaire

Servomoteur Type 3271/3277 ou type 3379

 $\dots \, cm^2$ Surface du

servomoteur

Course ... mm

Position de sécurité

vanne FERMÉE ou vanne OUVERTE

par manque d'air

Plage de pression nominale

Valeurs entre parenthèses selon DIN 11866 série B